High Quality Water

Stanford University Water Resources and Civil Infrastructure (WRCI) is pleased to provide you with the 2016 Annual Water Quality Report. The San Francisco Public Utilities Commission (SFPUC) and WRCI monitored water quality for both source and treated water supplies during 2016, and with one exception (see page 6), the water quality was in compliance with the State Water Resources Control Board - Division of Drinking Water (SWRCB-DDW) and the United States Environmental Protection Agency (USEPA) drinking water requirements (see page 5 for details). We continue our commitment to provide our customers with safe, high quality drinking water. The policy of WRCI is to fully inform its consumers about the water quality standards and typical concentrations. Stanford’s water supply is both chloraminated and fluoridated by the SFPUC.

The SFPUC collects daily water quality samples from various locations within their transmission system. The samples are analyzed for primary standards that apply to the protection of public health and secondary standards that refer to the aesthetic qualities of water, such as taste and odor.

Stanford also routinely collects water quality samples from various locations within the campus distribution system. The most frequently collected samples are analyzed for chloramine residual, coliform bacteria, and general physical parameters. Additional water quality samples are collected to monitor for more constituents in compliance with applicable requirements. A California certified laboratory analyzes required samples. Stanford submits monthly reports to the SWRCB-DDW that include monitoring results.

Stanford Water Resources

WRCI manages the storage, distribution, maintenance, and monitoring programs for Stanford’s drinking water supply. WRCI also manages flushing, cross-connection, and backflow prevention programs to ensure a consistent high quality drinking water supply.

In This Report

- Stanford University’s Drinking Water Sources 2
- Contaminants in Drinking Water 3
- Important Definitions 4
- Water Quality Data 5
- Additional Information about Water for Residents 6
- Water Conservation for Residents 7
- Contact Information 8

https://suwater.stanford.edu
Our Drinking Water Sources and Treatment

Supplied by the San Francisco Regional Water System (SFRWS), which is owned and operated by the SFPUC, our major water source originates from spring snowmelt flowing down the Tuolumne River to storage in Hetch Hetchy Reservoir. The well protected Sierra water source is exempt from filtration requirements by the USEPA and SWRCB-DDW. Water treatment is provided by the SFRWS, including disinfection by ultraviolet light and chlorine, corrosion control by adjustment of the water pH value, fluoridation for dental health protection, and chloramination for maintaining disinfectant residual and minimizing disinfection byproduct formation.

The Hetch Hetchy water is supplemented with surface water from two local watersheds. Rainfall and runoff from the 35,000-acre Alameda Watershed in Alameda and Santa Clara counties are collected in the Calaveras and San Antonio reservoirs, and delivered to the Sunol Valley Water Treatment Plant (SVWTP). Rainfall and runoff from the 23,000-acre Peninsula Watershed in San Mateo County are stored in the Crystal Springs, San Andreas, and Pilarcitos reservoirs, and delivered to the Harry Tracy Water Treatment Plant. In addition to these local sources, the SWRCB-DDW approved the SFPUC to use surface water collected in Lake Eleanor, Lake Cherry, and the associated creeks all conveyed via the Lower Cherry Aqueduct, Early Intake Reservoir and Tuolumne River (collectively known as Upcountry Non-Hetch Hetchy Sources, or UNHHS) as an additional drinking water source. The UNHHS water, if used, will be treated at the SWWTP prior to service to customers. In 2016 the SFRWS did not use UNHHS. Water at the two treatment plants is subject to filtration, disinfection, fluoridation, and pH adjustment for corrosion control optimization.

As in the past, the Hetch Hetchy Watershed provided the majority of our total water supply, with the remainder contributed by the two local watersheds in 2016.

Protecting Our Watersheds

The SFPUC conducts watershed sanitary survey for Hetch Hetchy source annually and local water sources every five years. The latest local surveys were done in 2016. In 2015, a special watershed sanitary survey for the upcountry water sources including Cherry Creek, Eleanor Creek, and Lower Cherry Aqueduct was completed as part of the SFPUC’s drought response plan efforts. These surveys evaluate the sanitary condition, water quality, potential contamination sources, and the results of watershed management activities, and were completed with support from partner agencies including the National Park Service and US Forest Service. These surveys have identified wildlife, stock, and human activities as potential contamination sources. The reports are available for review at the San Francisco District office of SWRCB (contact phone number: 510-620-3474).
Contaminants in Drinking Water

Drinking water (including bottled water) may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA’s Safe Drinking Water Hotline (800) 426-4791.

In order to ensure that tap water is safe to drink, the USEPA and SWRCB prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, which in some cases are radioactive. It can also pick up substances resulting from the presence of animals or from human activities. Such substances are called contaminants. Contaminants that may be present in source water include:

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharge, oil and gas production, mining, or farming.

Radioactive Contaminants can be naturally occurring or the result of oil and gas production, and mining activities.

Pesticides and Herbicides may originate from a variety of sources, such as agricultural or urban stormwater runoff and residential uses.

Organic Contaminants include synthetic and volatile organic compounds, that are by-products of industrial processes and petroleum production. They can also come from gas stations, urban stormwater runoff, agricultural applications, and septic systems.

Microbiological Contaminants, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural live stock operations, and wildlife.

Cryptosporidium is a parasitic microbe found in most surface water. The SFPUC tests regularly for this water-borne pathogen, and found it at very low levels in source water and treated water in 2016. Current test methods approved by the USEPA do not distinguish between dead organisms and those capable of causing disease. Ingestion of Cryptosporidium may produce symptoms of nausea, abdominal cramps, diarrhea, and associated headaches. Cryptosporidium will cause disease only if ingested. Additionally, it may be spread through means other than drinking water.

Special Health Needs
Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA and Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the USEPA’s Safe Drinking Water Hotline (800) 426-4791 or Website at www.epa.gov/safewater.

Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. There are no known lead service lines in the SFRWS or Stanford distribution system. We are responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. It is possible that lead levels at your home may be higher than at others because of plumbing materials used in your property. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Infants and young children are typically more vulnerable to lead in drinking water than the general population. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes (or until the temperature has changed) before using water for drinking or cooking. If you are concerned about lead levels in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800) 426-4791, or at www.epa.gov/safewater/lead.
The Water Quality Data table (Page 5) summarizes the 2016 detected drinking water contaminants and the information about their typical sources. An extensive water sample collection and testing protocol is used at the various water sources throughout the SFPUC transmission system and in the campus distribution system. In accordance with SWRCB guidance, contaminants below detection limits are not shown. The following are definitions of key terms noted on the adjacent Water Quality Data Table. These terms refer to the standards and goals for water quality.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close as possible to the PHGs or MCLGs (see definitions below) as is economically and technologically feasible. Secondary MCLs (SMCLs) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standard (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Treatment Techniques (TT): A required process intended to reduce the level of a contaminant in drinking water.

Turbidity: A water clarity indicator that measures the cloudiness of the water, and is also used to indicate the effectiveness of the filtration system. High turbidity can hinder the effectiveness of disinfectants.

Diverse Uses of Campus Domestic Water

- Swimming Pools
- Drinking Fountains
- Laboratories
Stanford University's Annual Water Quality Data for 2016

DETECTED CONTAMINANTS

<table>
<thead>
<tr>
<th>DETECTED CONTAMINANTS</th>
<th>Units</th>
<th>MCL</th>
<th>PHG or (MCLG)</th>
<th>Range</th>
<th>Average or (Maximum)</th>
<th>Typical Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURBIDITY (SFPUC samples)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unfiltered Hetch Hetchy Water</td>
<td>NTU</td>
<td>5</td>
<td>0.3 - 0.5 (2)</td>
<td>(3.2)</td>
<td>Soil runoff</td>
<td></td>
</tr>
<tr>
<td>Filtered Water - Sunol Valley Water Treatment Plant</td>
<td>NTU</td>
<td>1 (3)</td>
<td>N/A</td>
<td>(1.0)</td>
<td>Soil runoff</td>
<td></td>
</tr>
<tr>
<td>Filtered Water - Harry Tracy Water Treatment Plant</td>
<td>NTU</td>
<td>1 (3)</td>
<td>N/A</td>
<td>(0.06)</td>
<td>Soil runoff</td>
<td></td>
</tr>
<tr>
<td>Minimum 95 % of samples < 0.3 NTU</td>
<td>-</td>
<td>-</td>
<td>N/A</td>
<td>98% - 100%</td>
<td>Soil runoff</td>
<td></td>
</tr>
<tr>
<td>DISINFECTION BY-PRODUCTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHMs) (Stanford samples)</td>
<td>ppm</td>
<td>80</td>
<td>44.8 - 90.9 (74.9)</td>
<td>(63.6)</td>
<td>By-product of drinking water disinfection</td>
<td></td>
</tr>
<tr>
<td>Total Haloacetic Acids (HAAs) (Stanford samples)</td>
<td>ppm</td>
<td>60</td>
<td>41.8 - 85.9</td>
<td>(74.9)</td>
<td>By-product of drinking water disinfection</td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon (TOC) (SFPUC samples)</td>
<td>ppm</td>
<td>TT</td>
<td>1.6 - 5.3</td>
<td>2.4</td>
<td>Various natural and man-made sources</td>
<td></td>
</tr>
<tr>
<td>MICROBIOLOGICAL CONTAMINANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Coliform (Stanford samples)</td>
<td>%</td>
<td>NoP ≤ 5% of monthly samples</td>
<td>(0)</td>
<td>(0%)</td>
<td>Naturally present in the environment</td>
<td></td>
</tr>
<tr>
<td>Giardia Lamblia (SFPUC samples)</td>
<td>cyst/L</td>
<td>TT</td>
<td>0 - 0.11</td>
<td>0.03</td>
<td>Naturally present in the environment</td>
<td></td>
</tr>
<tr>
<td>INORGANIC CONTAMINANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (source water) (SFPUC samples)</td>
<td>ppm</td>
<td>2.0</td>
<td>0.3 (7)</td>
<td>Erosion of natural deposits</td>
<td>Water disinfectant added for treatment</td>
<td></td>
</tr>
<tr>
<td>Total Chlorine/Chloramine (Stanford samples)</td>
<td>ppm</td>
<td>MRDL=4</td>
<td>MRDLG=4</td>
<td>0.3 - 2.8</td>
<td>Runoff / leaching from natural deposits</td>
<td></td>
</tr>
<tr>
<td>CONSTITUENTS WITH SECONDARY STANDARDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SFPUC samples, except Color)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>ppm</td>
<td>200</td>
<td>600</td>
<td>ND-55</td>
<td>ND</td>
<td>Erosion of natural deposits; some surface water treatment residue</td>
</tr>
<tr>
<td>Chloride</td>
<td>ppm</td>
<td>500</td>
<td>N/A</td>
<td><3 - 16</td>
<td>8.8</td>
<td>Runoff / leaching from natural deposits</td>
</tr>
<tr>
<td>Color (Stanford samples)</td>
<td>unit</td>
<td>5</td>
<td>N/A</td>
<td><5 - 5</td>
<td><5</td>
<td>Naturally occurring organic materials</td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>µS/cm</td>
<td>1600</td>
<td>N/A</td>
<td>31 - 218</td>
<td>146</td>
<td>Substances that form ions when in water</td>
</tr>
<tr>
<td>Sulfate</td>
<td>ppm</td>
<td>500</td>
<td>N/A</td>
<td>1.0 - 30</td>
<td>16</td>
<td>Runoff / leaching from natural deposits</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>ppm</td>
<td>1000</td>
<td>N/A</td>
<td><20 - 95</td>
<td>63</td>
<td>Runoff / leaching from natural deposits</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>5</td>
<td>N/A</td>
<td>ND - 0.5</td>
<td>0.2</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>LEAD AND COPPER (Stanford Samples, 57 samples collected)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>ppm</td>
<td>1300</td>
<td>300</td>
<td><40 - 750</td>
<td>59</td>
<td>Corrosion of household plumbing systems</td>
</tr>
<tr>
<td>Lead</td>
<td>ppm</td>
<td>15</td>
<td>0.2</td>
<td><4 - 12</td>
<td><5</td>
<td>Corrosion of household plumbing systems</td>
</tr>
<tr>
<td>OTHER WATER QUALITY PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SFPUC Samples)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity (as CaCO₃)</td>
<td>ppm</td>
<td>N/A</td>
<td>7 - 112</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>ppm</td>
<td>1000 (NL)</td>
<td>ND-123</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromide</td>
<td>ppm</td>
<td>N/A</td>
<td><5-19</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium (as Ca)</td>
<td>ppm</td>
<td>N/A</td>
<td>2 - 18</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorate (10)</td>
<td>ppm</td>
<td>800 (NL)</td>
<td>47 - 250</td>
<td>143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness (as CaCO₃)</td>
<td>ppm</td>
<td>N/A</td>
<td>8 - 76</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>ppm</td>
<td>N/A</td>
<td>0.2 - 6</td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>unit</td>
<td>8.2 - 9.8</td>
<td>9.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphate (Ortho)</td>
<td>ppm</td>
<td>N/A</td>
<td><0.03-0.11</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>ppm</td>
<td>N/A</td>
<td>0.2 - 1</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silica</td>
<td>ppm</td>
<td>N/A</td>
<td>5.1 - 5.7</td>
<td>5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>ppm</td>
<td>N/A</td>
<td>2.6 - 17</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>ppm</td>
<td>N/A</td>
<td>13-204</td>
<td>95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:

1. Only detected contaminants shown, see page 6 for more information about HAA5 drinking water exceedance.
2. These are monthly average turbidity values measured every four hours.
3. There is no turbidity MCL for filtered water. The limits are based on the TT requirements for filtration systems.
4. This is the highest locational running annual average (LRAA).
5. Total organic carbon is a precursor for disinfection by-product formation. The TT requirement applies to the filtered water from the SVWTP only.
6. In May 2015, the SWRCB recommended an optimal fluoride level of 0.7 ppm be maintained in the treated water. In 2016, the range and average of the fluoride levels were 0.5ppm-0.8ppm and 0.6ppm, respectively (see Page 6).
7. The natural fluoride level in the Hetch Hetchy supply was Non-detect. Elevated fluoride levels in the SVWTP raw water are attributed to the transfer of fluoridated Hetch Hetchy water into the local reservoirs.
8. This is the highest running annual average value.
9. Lead and copper monitoring was conducted in 2015 at 57 homes and building taps. All results for samples collected at consumer taps were below the lead and copper Action Levels. Lead and copper tap sampling is required again in 2018.
10. The detected chlorate in treated water is a degradation by-product of sodium hypochlorite, used by the SFPUC for water disinfection.
Fluoridation and Dental Fluorosis
Mandated by California State law, fluoridation in water is widely accepted and has been proven to be safe and effective for preventing and controlling tooth decay. The SFPUC’s fluoride target level in the water is 0.7 milligram per liter, consistent with the May 2015 State regulatory guidance on the new optimal fluoride level.

Infants fed formula mixed with water containing fluoride may have an increased chance of developing tiny white lines or streaks in their teeth. These marks are referred to as mild to very mild fluorosis, and are often only visible under a microscope. Even in cases where the marks are visible, they do not pose any health risk. The CDC considers it safe to use optimally fluoridated water for preparing infant formula. To lessen the chance of dental fluorosis, you may choose to use low-fluoride bottled water to prepare infant formula. Nevertheless, children may still develop dental fluorosis due to fluoride intake from other sources such as food, toothpaste, and other dental products. Contact your health provider or SWRCB-DDW if you have concerns about dental fluorosis. For more information about fluoridation in your water, visit the SWRCB website www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation.shtml, and search for fluoride, or the CDC website www.cdc.gov/fluoridation.

Unregulated Contaminant Monitoring Rule

Haloacetic Acids 5 (HAA5) Notification
Stanford’s domestic water system exceeded a drinking water standard in December 2016, and a notice was distributed in compliance with State of California Water Resources Control Board requirements. While there was and is no emergency, this issue is being closely monitored. As our customers, we want you to know what happened, what you should do, and what has been done to correct this situation.

In December 2016, at one sampling location, results for HAA5s indicated an exceedance of the MCL. HAA5 is a common byproduct of the drinking water disinfection process. The standard for HAA5 is 60 micrograms per liter (µg/L) for the Locational Running Annual Average (LRAA), calculated as an average of the most recent four quarterly results. One of the four locations monitored for HAA5 in the Stanford water distribution system had an LRAA of 63.6 µg/L (average calculated between February and December 2016), exceeding the MCL of 60 µg/L.

Additional samples for HAA5 were collected in January 2017. These samples were substantially below the HAA5 MCL and levels that triggered the MCL exceedance in December 2016. As of March 2017, the Stanford domestic water system is in compliance with all State and Federal regulations. To see the full notification please visit: suwater.stanford.edu/sites/default/files/stanford_tier2notice_haa5.pdf.
Drought Restrictions Ended

Following unprecedented water conservation and plentiful winter rain and snow, on April 7, 2017 Governor Brown ended the drought State of Emergency in most of California, while maintaining water prohibitions on wasteful practices. Water conservation is a way of life in California and at Stanford.

Permanently prohibited water-wasting practices:
1) The application of potable water to outdoor landscapes in a manner that causes runoff such that water flows onto adjacent property, non-irrigated areas, private and public walkways, roadways, parking lots, or structures;
2) The use of a hose that dispenses potable water to wash a motor vehicle, except where the hose is fitted with a shut-off nozzle or device attached to it that causes it to cease dispensing water immediately when not in use;
3) The application of potable water to driveways and sidewalks (except for health and safety needs);
4) The use of potable water in a fountain or other decorative water feature, except where the water is part of a recirculating system;
5) The application of potable water to outdoor landscapes during and within 48 hours after measureable rainfall;

Water Conservation Opportunities:

DIY Water Wise Indoor Survey Kit
Want to improve water efficiency in your home? Do-It-Yourself Indoor Survey Kits are available. Test your home for leaks and discover the flow rate of different fixtures in your home. Contact Erica Kudyba at EKudyba@stanford.edu to get your Survey Kit.

Water Wise Outdoor Survey
Free Water Wise Outdoor Surveys are available through the Santa Clara Valley Water District, to evaluate your irrigation system, recommend repairs and upgrades, and give you a personalized irrigation schedule. Call (408) 630-2554 to schedule your survey.

Free Landscape Classes
Learn how to maintain a beautiful garden while reducing your water use. Visit http://bawsca.org/conserve/programs/classes/ for more information.

Free Sprinkler Irrigation Nozzles
Upgrade your spray nozzles to be more efficient for FREE! Residents can get up to 25 free Toro Precision Series Spray Nozzles. Visit www.freesprinklernozzles.com to get your voucher. For assistance contact Jennifer Fitch at jcfitch@stanford.edu.

Drought Response Results
The graph below illustrates the Stanford Campus’ excellent response to drought in 2014, 2015, and 2016 compared to the baseline use in 2013.

Campus Domestic Water Use
January 2013 - December 2016

Service Period

Gallons/Day

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2013 2014 2015 2016
Este reporte contiene información muy importante sobre el agua que toma. Llame a Stanford University (650) 725-8030 si necesita ayuda en español.